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Underdamped diffusion in the egg-carton potential
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It is shown by numerical solution of the Fokker-Planck equation in a coupled two-dimensional potential of
square symmetryegg-carton potentialthat an “anomalous” dependence of the diffusion coefficient on the
friction (D« %~ 7, with ¢<1) holds in a rather wide friction range in the underdamped regime. The exponent
o is not universal, but depends on the parameters of the potgi8E063-651X%97)11704-4

PACS numbg(s): 05.40:+j, 05.60+w, 82.20.Fd

Very recently, a Langevin simulation of diffusion in a » in the case of(r)=0 is simply D=y 1. The quantities

coupled two-dimensional (2D) potential of centered- pjotted in Figs. 1 and 2 are dimensionless. As a potential, we

rectangular symmetry, performed by Chen, Baldan, and Yingnqose the so-called “egg-carton” form:

[1] has shown that an “anomalous” dependence of the dif-

fusion coefficientD on the friction » holds in the under- V(x,y)=—2go[cogx) + cogy)]+2g,;cogx)cogy).

damped regime. Precisely, Chen, Baldan and Ying found that 2

Dx 7 7 with 0=0.5, as opposed to the ! dependence

found in the case of one-dimensiorial Separab])gsystems This model potential is often introduced in the StUdy of non-

[2]. They explained their result in terms of the reduced problinear dynamics of a classical particle moving conservatively

ability of long jumps, due to the fact that, in their potential, in @ periodic field of forc¢3,4]. If g, andg; are positive and

the path connecting adjoining sites does not coincide witll1=<Jo there are four minima at the corners of the cell, one

the direction of the easy crossing of the saddle points. Morecentral maximum, and saddle points at the midpoints of the

over, by some considerations about the enhanced deactivadges, with energy barrieg, = 4(go—g,). Therefore, in the

tion behavior at low friction, they conjectured that the expo-Casego=J;, the energy barriers vanish and the minima are

nent should not be universal. connected by a network of flat channels, as can be seen in
Here we solve numerically the Fokker-Planck equation

(FPE in a 2D potential of square symmetry and we will

show the following results. First, we show that an anomalous

dependence db is found (in a wide friction range, see be-

low) also in the case of a potential where the equilibrium P 13 »::'» ____ )
sites lie always on the same line which connects the saddle >~ M‘“\ I/!;}‘»(I;’ﬁﬁ“‘\‘\\gl%"‘\\\ -
points, i.e., in the easy-crossing direction; in particular, we ~ 056 //,’/,’.Q“\\\\!’,”""‘\‘\\\\?"‘Q““»‘/I;/li‘““\\\\
focus on the limiting case where the barrier between minima 04 %ﬁ“ﬁ\\%,%‘\ﬁ“ﬁ%i”“‘“\\\\\\
is lowered to zero. Second, we will demonstrate explicitly ' M““‘W%‘\\\‘WW@%“‘\\“
that the exponentr is not universal, as it depends on the QL ‘/////I/,"i‘é‘i“‘\\\\\\}\(’/ﬁf’,{{l,,qu:g“\\\\\\\\&
details of the potential. Y 1o sl snr T T
Let us consider a particle moving in a periodic square 5 ‘ s 6 8
two-dimensional potential(r) of lattice constang; the par- $ X
ticle is in contact with a heat bath at temperatiirevhich
furnishes both fluctuatioimodeled by a white noi$eand
dissipation(due to a friction 7). In these conditions, the
phase-space probability densify satisfies a four-variable /; 1.4 i'ﬁ\\' -
FPE, S 12 3R
R /i
e
of of F(r) of 9 keT of > 08 2T AN
—=—-Vv.-——— —+p—|vf+——|, (1 0.4 ,«///’QM\\\\\\\\\‘\‘
ot o m v Tov m gv 0.2 3\ /’///N%’&\\“\\;\t
wherer = (x,y), v=(vy,v,), andm are the position, the ve- SN
locity and the masss=—VV is the periodic force. Y0 g 10 17
The following dimensionless variables are introduced: S, 20 4
r=Qula)r; t=wla)(kgT/m)¥%;  v=(m/kgT)¥%; 0 X
y=(al27) (m/kgT)Y25; V(r)=V(r)/kgT. With this choice
for r, the unit cell goes from- 7 to 7. In the following the FIG. 1. The egg-carton potential in the flat-channel case

dimensionless variables will be rewritten without the over-g,=gj. In the lower panel the potential has been rotated in order to
bar. In these variables, the dependenc®obn the friction  show the flat channel in perspective.
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linear behavior:Dyxy'~ 7 from y=0.1 and below, with
0=0.76 atgy=g;=0.1 and0=0.64 atgy=g,=0.2. Of
course, our calculations do not demonstrate that these behav-
iors would extend asymptotically t¢—0; however, they
show that there are significant differences between coupled
and decoupled behaviors in a wide friction range, even in the
case examined here, where the potentét) is not large
with respect to the temperature. We remark that, in the de-
coupled case, an energy barrier is present on the easiest dif-
fusion path, while in the coupled case the barrier is absent. In
spite of that, the diffusion coefficient is smaller. In the pres-
ence of coupling, the width of the channel is narrower at the
saddle point positions than at the minima. This seems suffi-
cient to cause an anomalous behavior. In the conservative
cas€3,4], the coupling may cause the localization during the
N L L particle motion and the appearance of anomalous diffusion
' 1072 10" 1 (in conservative systems, the anomaly is not related to the
Y behavior ofD with friction, but to the behavior of the mean-
square displacement as a function of tjm&he coupling
allows the energy transfer between theandy degrees of
freedom; because of that, it may be difficult for the diffusing
particle to perform long and straight inertial trajectories.
A coupled diffusion problentat high friction, with some
similarity with our flat-channel case was studied by Zwanzig
d[?], who considered the motion of a Brownian particle in a
2D channel with periodically varying width. No potential is
present in the channel and the particle is subjected only to
the geometrical constraint of a nonconstant channel width.
Solving exactly the problem by means of a conformal trans-
formation, Zwanzig showed that the diffusion coefficient is
always smaller thary™?, i.e., of the result given by Ein-
stein’s relationship, except for a rectangular charidetou-
2pled casg
where the quantityD y is reported down tey=5x10"3, In In co_nclu_smn, we_h_ave ;hown that_an an_omal_ou_s behavior
the decoupled cas@vhich is equivalent to a 1D problem _of the diffusion coeff|C|er_1t is present, in a wide fnc_uon range
in the underdamped regime, even for a potential in which no

Dy tends to a constant ag—0 [2]. Four different couples o i i L

(do.g,) are considered. Precisely, we consider the flatENeroy barrier is present along the straight line adjoining the

chg,nﬁel casego=g _0'1 (full circlés) and go=g,=0.2 minima. That behavior is characterized by the relatidon
0—Y1— VY- o0~ Y, =vu.

(full squares, and compare the results to the decoupled case:s;Zt; y ,ovrv:‘rrr(;f)# t;hZ ;;SO?e()r;[t;;TI\:)le gle’peevrfgsfg; ?h%l\;zr;asn):g-ers
0o=0.1,g,=0 (open circles andgy=0.2,g,=0 (triangles. '

The behaviors are clearly different: the decoupled cases ha\Pef the potential itself.

an inflection point in the region neat=0.1 and then accom- We thank L.Y. Chen, M. R. Baldan, and S. C. Ying for
modate slowly to a constant. The flat-channel cases show lzaving disclosed to us their results prior to publication.

FIG. 2. Behavior oDy as a function ofy. The coupled cases
0o=0,=0.1 (full circles), go=g,="0.2 (full square$; and the de-
coupled casegy=0.1, g;=0 (open circley andgy,=0.2,g,=0
(triangles are considered. The lines are only guides to the eyes.

Fig. 1. For comparison, the coupled potential of centere
rectangular symmetry used by Chen, Baldan, and Yikg
can be written as) cgy(X,y) = 2g[ 1+ sin)sin(y//2)].

The FPE is solved by the matrix-continued-fraction
method[2]. The dynamic structure factor is calculated and
D is obtained by the proper Kubo relation. A detailed de-
scription of the method is found ib] for 2D systems and in
[2,6] for 1D systems.

The results of our calculations are presented in Fig.
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