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Underdamped diffusion in the egg-carton potential
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It is shown by numerical solution of the Fokker-Planck equation in a coupled two-dimensional potential of
square symmetry~egg-carton potential! that an ‘‘anomalous’’ dependence of the diffusion coefficient on the
friction (D}h2s, with s,1) holds in a rather wide friction range in the underdamped regime. The exponent
s is not universal, but depends on the parameters of the potential.@S1063-651X~97!11704-4#

PACS number~s!: 05.40.1j, 05.60.1w, 82.20.Fd
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Very recently, a Langevin simulation of diffusion in
coupled two-dimensional ~2D! potential of centered-
rectangular symmetry, performed by Chen, Baldan, and Y
@1# has shown that an ‘‘anomalous’’ dependence of the
fusion coefficientD on the frictionh holds in the under-
damped regime. Precisely, Chen, Baldan and Ying found
D}h2s with s50.5, as opposed to theh21 dependence
found in the case of one-dimensional~or separable! systems
@2#. They explained their result in terms of the reduced pr
ability of long jumps, due to the fact that, in their potentia
the path connecting adjoining sites does not coincide w
the direction of the easy crossing of the saddle points. Mo
over, by some considerations about the enhanced deac
tion behavior at low friction, they conjectured that the exp
nent should not be universal.

Here we solve numerically the Fokker-Planck equat
~FPE! in a 2D potential of square symmetry and we w
show the following results. First, we show that an anomal
dependence ofD is found ~in a wide friction range, see be
low! also in the case of a potential where the equilibriu
sites lie always on the same line which connects the sa
points, i.e., in the easy-crossing direction; in particular,
focus on the limiting case where the barrier between min
is lowered to zero. Second, we will demonstrate explic
that the exponents is not universal, as it depends on th
details of the potential.

Let us consider a particle moving in a periodic squa
two-dimensional potentialV(r ) of lattice constanta; the par-
ticle is in contact with a heat bath at temperatureT which
furnishes both fluctuation~modeled by a white noise! and
dissipation ~due to a frictionh). In these conditions, the
phase-space probability densityf satisfies a four-variable
FPE,
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wherer5(x,y), v5(vx ,vy), andm are the position, the ve
locity and the mass,F52¹V is the periodic force.

The following dimensionless variables are introduce
r̄5(2p/a)r ; t̄5(2p/a)(kBT/m)

1/2t; v̄5(m/kBT)
1/2v;

g5(a/2p)(m/kBT)
1/2h; V̄( r̄ )5V(r )/kBT. With this choice

for r , the unit cell goes from2p to p. In the following the
dimensionless variables will be rewritten without the ov
bar. In these variables, the dependence ofD on the friction
551063-651X/97/55~4!/4810~2!/$10.00
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g in the case ofF(r )50 is simplyD5g21. The quantities
plotted in Figs. 1 and 2 are dimensionless. As a potential,
choose the so-called ‘‘egg-carton’’ form:

V~x,y!522g0@cos~x!1cos~y!#12g1cos~x!cos~y!.
~2!

This model potential is often introduced in the study of no
linear dynamics of a classical particle moving conservativ
in a periodic field of force@3,4#. If g0 andg1 are positive and
g1<g0 there are four minima at the corners of the cell, o
central maximum, and saddle points at the midpoints of
edges, with energy barriersEb54(g02g1). Therefore, in the
caseg05g1, the energy barriers vanish and the minima a
connected by a network of flat channels, as can be see

FIG. 1. The egg-carton potential in the flat-channel ca
g05g1. In the lower panel the potential has been rotated in orde
show the flat channel in perspective.
4810 © 1997 The American Physical Society
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Fig. 1. For comparison, the coupled potential of centere
rectangular symmetry used by Chen, Baldan, and Ying@1#
can be written asUCBY(x,y)52g@11sin(x)sin(y/A2)#.

The FPE is solved by the matrix-continued-fractio
method@2#. The dynamic structure factor is calculated an
D is obtained by the proper Kubo relation. A detailed de
scription of the method is found in@5# for 2D systems and in
@2,6# for 1D systems.

The results of our calculations are presented in Fig.
where the quantityDg is reported down tog5531023. In
the decoupled case~which is equivalent to a 1D problem!,
Dg tends to a constant asg→0 @2#. Four different couples
(g0 ,g1) are considered. Precisely, we consider the fla
channel casesg05g150.1 ~full circles! and g05g150.2
~full squares!, and compare the results to the decoupled cas
g050.1,g150 ~open circles! andg050.2,g150 ~triangles!.
The behaviors are clearly different: the decoupled cases h
an inflection point in the region nearg50.1 and then accom-
modate slowly to a constant. The flat-channel cases sho

FIG. 2. Behavior ofDg as a function ofg. The coupled cases
g05g150.1 ~full circles!, g05g150.2 ~full squares!; and the de-
coupled casesg050.1, g150 ~open circles!, and g050.2,g150
~triangles! are considered. The lines are only guides to the eyes
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linear behavior:Dg}g12s from g50.1 and below, with
s.0.76 at g05g150.1 ands.0.64 at g05g150.2. Of
course, our calculations do not demonstrate that these be
iors would extend asymptotically tog→0; however, they
show that there are significant differences between coup
and decoupled behaviors in a wide friction range, even in
case examined here, where the potentialV(r ) is not large
with respect to the temperature. We remark that, in the
coupled case, an energy barrier is present on the easies
fusion path, while in the coupled case the barrier is absen
spite of that, the diffusion coefficient is smaller. In the pre
ence of coupling, the width of the channel is narrower at
saddle point positions than at the minima. This seems su
cient to cause an anomalous behavior. In the conserva
case@3,4#, the coupling may cause the localization during t
particle motion and the appearance of anomalous diffus
~in conservative systems, the anomaly is not related to
behavior ofD with friction, but to the behavior of the mean
square displacement as a function of time!. The coupling
allows the energy transfer between thex and y degrees of
freedom; because of that, it may be difficult for the diffusin
particle to perform long and straight inertial trajectories.

A coupled diffusion problem~at high friction!, with some
similarity with our flat-channel case was studied by Zwan
@7#, who considered the motion of a Brownian particle in
2D channel with periodically varying width. No potential
present in the channel and the particle is subjected onl
the geometrical constraint of a nonconstant channel wid
Solving exactly the problem by means of a conformal tra
formation, Zwanzig showed that the diffusion coefficient
always smaller thang21, i.e., of the result given by Ein-
stein’s relationship, except for a rectangular channel~decou-
pled case!.

In conclusion, we have shown that an anomalous beha
of the diffusion coefficient is present, in a wide friction rang
in the underdamped regime, even for a potential in which
energy barrier is present along the straight line adjoining
minima. That behavior is characterized by the relationD
}h2s, with s,1; s is not universal, even for a given sym
metry or form of the potential, but depends on the parame
of the potential itself.

We thank L.Y. Chen, M. R. Baldan, and S. C. Ying fo
having disclosed to us their results prior to publication.
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